On the Relative Consistency Strength of Determinacy Hypothesis

نویسندگان

  • Alexander S. Kechris
  • Robert M. Solovay
  • ROBERT M. SOLOVAY
چکیده

For any collection of sets of reals C, let C-DET be the statement that all sets of reals in C are determined. In this paper we study questions of the form: For given C C C', when is C'-DET equivalent, equiconsistent or strictly stronger in consistency strength than C-DET (modulo ZFC)? We focus especially on classes C contained in the projective sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Limits of Determinacy in Second Order Arithmetic: Consistency and Complexity Strength

We prove that determinacy for all Boolean combinations of Fσδ (Π 0 3) sets implies the consistency of second-order arithmetic and more. Indeed, it is equivalent to the statement saying that for every set X and every number n, there exists a β-model of Πn-comprehension containing X. We prove this result by providing a careful level-by-level analysis of determinacy at the finite level of the diff...

متن کامل

On the Relative Consistency Strength of Determinacy Hypotheses

For any collection of sets of reals C, let C-DET be the statement that all sets of reals in C axe determined. In this paper we study questions of the form: For given C Q C, when is C'-DET equivalent, equiconsistent or strictly stronger in consistency strength than C-DET (modulo ZFC)? We focus especially on classes C contained in the projective sets.

متن کامل

The Strength of Projective Martin Conjecture

We show that Martin’s conjecture on Π1-functions uniformly ≤T -order preserving on a cone implies Π1 Turing Determinacy over ZF+DC. In addition, it is also proved that for n ≥ 0, this conjecture for uniformly degree invariant Π2n+1functions is equivalent over ZFC to Σ2n+2-Axiom of Determinacy. As a corollary, the consistency of the conjecture for Π1-uniformly degree invariant functions implies ...

متن کامل

The axiom of real Blackwell determinacy

The theory of infinite games with slightly imperfect information has been focusing on games with finitely and countably many moves. In this paper, we shift the discussion to games with uncountably many possible moves, introducing the axiom of real Blackwell determinacy Bl-ADR (as an analogue of the axiom of real determinacy ADR). We prove that the consistency strength of Bl-ADR is strictly grea...

متن کامل

Determinacy from Strong Compactness of Ω1

In the absence of the Axiom of Choice, the “small” cardinal ω1 can exhibit properties more usually associated with large cardinals, such as strong compactness and supercompactness. For a local version of strong compactness, we say that ω1 is Xstrongly compact (where X is any set) if there is a fine, countably complete measure on ℘ω1(X). Working in ZF + DC, we prove that the ℘(ω1)-strong compact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008